
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Semester Thesis

TinyOS meets BTnode

6. Februar 2003

Thomas Hug
Florian Süss

Assistant: Jan Beutel, Martin Hinz
Professor: Lothar Thiele

2

Abstract

BTnodes are embedded devices with a Bluetooth module and an AT-
mega128 processor on it. This thesis describes the reprogramming of other
ATmega128 devices, each connected as target to a BTnode which build a
backbone network for code distribution. A development PC is used to en-
ter new code into the network. This code is distributed via multihop to
all BTnodes in the backbone network. Berkeley Motes were used as target
devices because of their low power capabilities.

2

Contents

1 Introduction 5

2 Network Environment and Devices 6

2.1 Backbone Network . 6

2.1.1 BTnode . 6

2.1.2 ATmega128 . 7

2.2 Target Network . 8

2.2.1 Structure . 9

2.2.2 Target Devices . 9

2.3 Network Node: Combination Host - Target 10

2.3.1 Alternatives . 10

3 Remote Firmware Update 12

3.1 Approach . 12

3.2 Programming Procedure . 12

3.3 Realization in Host System 13

3.3.1 Init . 13

3.3.2 Target Detected . 14

3.3.3 Check Version . 14

3.3.4 Programming . 15

3.3.5 Failed . 15

3.4 Target Programming . 15

3.4.1 SPI Interface . 15

3.4.2 Serial Downloading . 15

3.4.3 Instruction Set . 16

3.4.4 Software Implementation 17

3.5 Definitions . 18

3.6 Performance . 19

4 Usage 21

4.1 Installation BTnode System Software 21

4.2 Building BTnode Firmware 21

4.3 Runing Target Programming 22

3

4.4 Debugging on BTnodes . 23
4.5 Multihopping . 24

5 Conclusion 25

A Aufgabenstellung 27

4

Chapter 1

Introduction

A problem in wide ad-hoc networks is to manage a large amount of devices.
Software upgrades would not be possible if there are no mechanisms sup-
porting the distribution of new program code to many embedded devices.

The BTnodes [14] are embedded devices with a Bluetooth radio interface.
In a former diploma thesis [1], the distribution of program code in an ad
hoc network with BTnodes was already implemented.

This thesis uses the code distribution capabilities of BTnodes to program
other devices which must not be able to provide communication capabilities.
It is possible to program any kind of devices with a certain compatibility in
processor architecture to the BTnodes.

Several possibilities of code distribution and reprogramming were eval-
uated and the most suitable procedure was implemented on the BTnodes.

The basics of BTnodes and Bluetooth are described in the diploma thesis
of Urs Frey [1].

5

Chapter 2

Network Environment and

Devices

The BTnodes [14] are able to connect each other to form a scatter network.
This functionality is provided by the treenet application.

The goal of this thesis is to find a solution to reprogram different nodes
in a heterogenous network using a BTnode network as a backbone. Even
devices with no Bluetooth device should be programmable.

Different approaches were discussed in section 2.5 to accomplish the task.

2.1 Backbone Network

The treenet application is responsible to interconnect the BTnodes to a tree
(Figure 2.1). Using the Bluetooth inquiry function, the BTnodes search
other BTnodes. The BTnodes then try to connect to each of these neighbor
nodes. Every BTnode running treenet can be added or removed from the
tree. The tree nodes are independent of each other and every node can be
used to send data to the backbone network. The tree is used as a backbone
network to transport data.

2.1.1 BTnode

The BTnode, developed at ETH Zurich [14], is a versatile, autonomous wire-
less communication and computing platform based on a Ericsson Bluetooth
radio and an ATmega128 microcontroller [2]. Figure 2.2 shows the architec-
ture of BTnodes. It serves as a demonstration and prototyping platform for
research in mobile, ad hoc and distributed wireless sensor networks (WSN).
Because the Bluetooth interface can transmit data very fast, reliable and has
a wide range compared to other radio techniques, BTnodes are well suited
to be used as backbone network.

6

Figure 2.1: Treenet with BTnodes

2.1.2 ATmega128

BTnodes are equipped with an ATMEL ATmega128L microprocessor [2]
with addidional SRAM memory. Table 2.1 gives an overview of the different
memory sections and their behavior.

Section Size on Reset Persistence

Registers 32Bit overwritten volatile

SRAM intern (Stack) 4kB initialized volatile

SRAM extern (Data section) 60kB initialized volatile

SRAM extern (additional banks) 180kB retain data volatile

Flash 128kB retain data non-volatile

EEPROM 4kB retain data non-volatile

Table 2.1: Memory sections

It contains 128KB reprogrammable flash memory, which is divided into
64K words of 2 bytes each. These words are addressed by giving the 16 bit
word address and one additional address bit to specify the low or high byte
of the word. Usually, flash is used to store executable program code. The
flash memory is divided into a boot flash section and an application flash
section. If the processor is actually running in the boot memory section, the
application memory section can be reprogrammed.

The 4K EEPROM memory section is used to store system information
and program version numbers.

Additionally to the internal 4KB SRAM, ATmega128 provides an I/O

7

Module Microcontroller

ATmega128L

Supply

Bluetooth

Power

GPIO Analog Serial IO

Clock/Timer LED’s

SRAM

Figure 2.2: BTnode Architecture

memory interface for addressing 60KB external SRAM memory. Because
this is insufficent for many use cases (for example to store new program
code of 128KB before reprogramming the flash memory), there is an addi-
tional 180KB SRAM added, divided into 3 banks of each 60KB. In order
to address these additional memory banks, two general purpose I/O pins of
the processor are configured to act as additional address lines. All mem-
ories BTnode is equipped with are shown in figure 2.3. The details about
implemention of the external SRAM banks are described in [1].

ATmega128SRAM

SRAM 4kB

EEPROM
4kB

Flash
128kB

Latch

60kB60kB 60kB 60kB

A[7:0] PA[7:0]

D[7:0]

A[15:8] PC[7:0]

PG2G

DQ

PG1RD
PG2WR

PE7
PD7

A16 A17

Figure 2.3: Memory Sections

2.2 Target Network

A set of serveral devices have to be updated. These devices build an overlay
network (dashed lines in Figure 2.4) to the backbone network. A group of
devices have the same purpose, for example a sensor network. The over-

8

lay network has only an unreliable character, the targets have no direct
connection to each other and there must not be interaction between them.

2.2.1 Structure

The network is assumed to be heterogenous, as shown in figure 2.4. The
BTnode hosts could be with or without a target. Additionally, multiple
overlay networks with different target types are allowed. The overlay net-
works and therefore the targets are completely independent of the backbone
network.

Figure 2.4: Treenet consisting of hosts (B) and targets (T)

2.2.2 Target Devices

The Berkeley Motes [7] were chosen based on their low power radio interface
from ChipCon [10] and their ATmega128 processor. The ChipCon radio is
more than ten times slower than the Bluetooth radio of the BTnode and
also have a much shorter radio range. Therefore, they are not optimal to
be used for code distribution. Additionally, Motes don’t have any external
SRAM memory. Instead they are equipped with 512KB serial flash, which
is very slow and uses a lot of power.

In combination with code distribution and reprogramming, a transmis-
sion failure would cause a Mote to crash, because not all program code was
transmitted and then a part of this code is missing. A restore would only be
possible via PC with an appropriate programming toolkit (for example an
AVR In-System Programmer) and is inacceptable in an environment with
more than 100 nodes.

9

2.3 Network Node: Combination Host - Target

The fast radio of BTnodes and the SRAM memory provides a perfect solu-
tion to reprogram other devices. Code is distributed through the backbone
network of BTnodes and the received code is stored in the SRAM. As soon
as code was received and the distribution ended, the programming of the
target is started.

2.3.1 Alternatives

Figure 2.5 reflects the combination of a host and a target device in a node
of the treenet.

Figure 2.5: Combination of Host and Target

In order to program the target, the host device has to send new program
code, that was distributed in the backbone network, to the memory of the
target device. This could be done with a cable between the two devices or
using a wireless technology.

It depends on the target device and especially on the microprocessor on
it what techniques are reasonable to program target devices.

In this work, only devices equipped with an ATmega128 processor were
used, and there are several programming mechanisms provided. At a node of
the treenet, host and target are close to each other, so the present solutions
are all based on a wired connection. There are several possibilities:

• Serial Interface (UART). It would be possible to use a common serial
interface to program the target. But then, the target device should
also be able to communicate with the host device during programming
to put retrieved data into flash. So, there is additional firmware to be
programmed and loaded to the target device and the target has to
participate active in the connection.

• Serial Downloading. With serial downloading, the target can be pro-
grammed without applying any functions on it. There is an instruction
set provided that can be used by the host and is understood by the
target. This way, it is possible to write new code into flash of the
target without knowing anything about the firmware running on it.

10

• Parallel Programming. This works basically equally to serial down-
loading. It is much faster than serial downloading, but unfortunately
uses much more connection pins. Additionally, parallel programming
needs a higher voltage (5 Volts instead of 3.3 Volts for serial program-
ming).

• JTAG. Similar to a serial interface, programming with JTAG control
only needs few pins. It is quite similar to serial downloading, but is
faster and better suited for debugging. But the implementation of a
JTAG control connection is more complicated than the solution with
serial downloading.

It would be nice to use a protocol that could read the status information
about a target without rebooting it. This would have the advantage to
provide full “plug and play” capability. The solutions Serial Downloading,
Parallel Programming and JTAG all need to reset the target after each
action concerning it. Therefore, a host cannot determine the exchange of a
target without rebooting it.

Finally, there should be the possibility to switch off the backbone net-
work and work only with the target networks in order to reduce power
consumption.

11

Chapter 3

Remote Firmware Update

3.1 Approach

Given two connected devices, the simplest way of interaction in between
is carried out if one of the devices is a master (host) an the other a slave
(target). The master has full control over its slave. The slave is therefore
independent of the master.

The ideal solution to achieve this control behaviour is Serial Downloading
(see section 2.5). This solution uses the same procedure as an AVR In-
System Programmer if the devices are directly programmed from a PC. A
further advantage is the independence from the operating system running
on the target. Even targets with no operating system running could be
programmed. Only the programming interface has to be compatible.

A major disadvantage is the speed. The serial connection is a bottleneck
concering bandwith and access time. A direct connection to the memory
over the 8Bit bus is more than ten times faster and has a lower latency.

3.2 Programming Procedure

The following diagram gives an idea of the intended procedure:

12

The Linux BTnode emulation is started and the appropriate
code can be loaded into the memory. The software
automatically starts to distribute the code to other

devices in the tree that was built autonomously.

��

The new code is offered to each connected BTnode neighbor.
The BTnode decides if the code is accepted or not, based

on the type and version of the code offered.

��

Every BTnode with valid code in the SRAM tries to
redistribute its code to other devices in the tree.

��

Once the program code has been sent and the program type
corresponds to the attached target, programming the target

starts.

Because target programming has to be flexible, a ”plug and play” solu-
tion is needed. Independent of the target state, the host must be able to
interrupt the target, reprogram it and reboot it at any given time.

3.3 Realization in Host System

Figure 3.1 shows the procedure that runs on the host BTnode. An arriving
program packet triggers the init procedure if the program type matches the
value of the attached target device.

3.3.1 Init

Initialization of host and target. The host checks if there is a target con-
nected via the SPI interface. If the connection attempt returns a success, the
host saves this flag in its EEPROM and changes to the state target detected.

13

start

##G

G

G

G

G

G

G

G

G

init

failed

��

success

''
target detected

prog packet

check version

no prog needed

JJ

newer code

��
failed

prog packet

BB

programming

programming failed

gg

success

jj

Figure 3.1: State machine in the host BTnode

If the connection attempt failed, nothing is done and the system changes
to state failed.

The initialization procedure is executed after booting the host device
and whenever the system is in state failed and a new programming request
packet arrives.

3.3.2 Target Detected

In the state target detected, the EEPROM value target detected of the
host system is true. It is mandatory that the hostsystem really has a target
connected. Because of the Serial Downloading solution, it is not possible to
check the connection without resetting the target device. The hostsystem
therefore isn’t informed when the target is disconnected. Only its last state
is known.

3.3.3 Check Version

As soon as new program code of the target type is available on the host and
the hostsystem is in the state target detected, the version of the new program
is compared to the running version in the target. The version of the target is
only saved in the hosts EEPROM. To gain more flexibility and transparency
with different programs on targets and different targets, a routine to check
the targets version directly was not implemented. The target operating
system should be capable of independently using its EEPROM and memory.

If the offered program has a greater version number than the one in
the hosts EEPROM, the program is accepted and the host system tries to

14

program the target in the programming state.
In case of an older program or an equivivalent to the already loaded one,

the request is denied and the system changes back to target detected with
no effect.

3.3.4 Programming

The program data in the SRAM of the host system is sent to the target. If
the programming attempt failed, the EEPROM value target detected is
set to false and the system changes to failed.

On success, the new program version is saved in the EEPROM and the
system changes to target detected.

3.3.5 Failed

The last initialization or programming attempt has failed. The EEPROM
value target detected is false.

As soon as a new programming packet arrives, this state is left and a
new initialization attempt is processed.

3.4 Target Programming

3.4.1 SPI Interface

ATmega128 processor provides a high-speed synchronous interface, called
Serial Peripheral Interface (SPI). This interface is provided on BTnodes at
port B (J6) using pins PB0 (used as reset), PB1 (clock), PB2 (master out-
put / slave input) and PB3 (master input / slave output) of the ATmega128
processor. A device using SPI can be configured as master or slave, corre-
sponding to the value of the master / slave select bit in the SPI Control
Register. To utilize the SPI interface, the SPI enable bit in the SPI Control
Register must be set.

A connection between two BTnode devices, both using the SPI interface,
behaves like a common serial connection. In order to communicate to each
other via SPI, the BTnodes have to use an instruction set given by ATMEL,
described in section 3.4.3.

3.4.2 Serial Downloading

It is possible to program ATmega128 memory (flash and EEPROM) with the
serial SPI interface, called Serial Downloading. This is basically the same
that is done while uploading new program code to an embedded device with
a programmer, for example with AVR In-System Programmer (ISP). Serial
Downloading is not a synchronous communication anymore, the host sends
instructions and the target has to execute them without any interaction. A

15

cable is needed to connect the SPI-port (J6) of the host device with the
ISP-port (J1) of the target device (figure 3.2). To enter Serial Downloading
mode, the reset pin of the target device must be set to 0. This functionality
is provided by a general purpose input / output pin of the host device.
Now, the target is in a ’dead’ mode, stopped working immediately (all data
in SRAM of the target are lost!) and is ready to receive new program code.
When programming is finished, the reset pin must be set back to 1 to return
to operation mode, then the target device reboots and starts executing the
new code.

Figure 3.2: Combination of Host and Target

3.4.3 Instruction Set

The SPI Serial Programming instruction set uses instructions that are 4
bytes long. Each byte is echoed by the interface, this can be used to test if
the connection is working properly. After pulling down the reset signal, the
Programming Enable instruction (0xac, 0x53, 0xXX, 0xXX) must be sent
from the host to the target (0xXX stands for ”don’t care”), followed by the
instructions needed for programming.

The most important instructions are:

• Chip Erase, (0xac, 0x80, 0xXX, 0xXX). Erases flash memory of the
target device, all values in flash are set to 0xff. It is recommended to
perform chip erase before starting downloading new code.

16

• Read from EEPROM memory. With instruction (0xa0, 0xXa, 0xbb,
0xoo), the value 0xoo at address 0xabb in EEPROM is returned.

• Write to EEPROM memory. To write data 0xii to EEPROM address
0xabb, instruction (0xc0, 0xXa, 0xbb, 0xii) is used.

• Read Memory Page. Instruction (0x20, 0xaa, 0xbb, 0xoo) returns value
0xoo of the low byte at flash address 0xaabb and 0x28, 0xaa, 0xbb, 0xoo
returns the value of the high byte at this flash address.

• Load Memory Page. With ATmega128, a whole flash memory page
(128 words / 256 bytes) must be filled with data before writing it.
(0x40, 0xXX, 0xbb, 0xii) for low byte respectively (0x48, 0xXX, 0xbb,
0xii) for high byte loads data 0xii to low or high flash address 0xbb.
Rememer to use only values from 0 to 127 as flash addresses 0xbb due
to the page size of 128 words.

• Write Memory Page. Afer loading, the page at flash address 0xaabb is
written at once with instruction (0x4c, 0xaa, 0xbb, 0xXX). For address
0xbb, only the values 0 or 128 are allowed, because this is just the
address of the memory page.

• Device Code Test. It is possible to test what equipment the connected
target uses:
Manufacturer test (0x30, 0xXX, 0x00,0xyy): returns 0x1e if processor
was manufactured by ATMEL.
Part familiy and memory size test (0x30, 0xXX, 0x01, 0xyy): return
value 0x9n indicates AVR with 2nKB flash memory.

3.4.4 Software Implementation

• Init Routine

After the SPI Interface has been initialized (by setting the ATmega128
SPI pins and pull down reset pin of target device), the init routine
checks if there is a target attached and if there is one, what processor
it uses. Also there is a test of the amount of flash memory. If there
is no ATMEL processor found, the action aborts and target program-
ming fails.
These tests are always carried out when powering-up or rebooting the
host device. If a correct target has been detected, the host reads the
running program version and stores it in its EEPROM.
Finally, all SPI settings have to be reset, the pins used in the AT-
mega128 reset to original state and reset pin of target set to 1. The
host now continues with normal work.

17

• Download new code

When a host decides to download new code to the target, it first checks
if there is a target attached (executes again init routine), because if
the host is in state target detected and the target was removed, it has
no information whether the target is still attached or not. Also, the
version number of the newly arrived code is read and compared to the
running version on target. Should one of these checks fail, the newly
arrived code is rejected and host system status changes to failed.
If the correct target was detected, the host system starts the program-
ming routine by erasing the flash on the target.
With ATmega128 processor, flash memory is divided into pages of 128
words (256 bytes). To write to the flash, a whole page must be loaded
and written afterwards. With a mechanism called polling it is possible
to detect if page writing finished. One byte in this page is read and if
the value change from 0xff (after flash erase, all values are set to 0xff)
to the correct value, the whole page was written.

• Sending and receiving data

Sending and receiving data is basically the same mechanism: the data
byte is loaded into the SPI Data Register and is autonomously shifted
out to the other device. As soon as sending / receiving data has
finished, a flag in the SPI Status Register is set.

• Event handling

While sending or receiving data, the BTnode must wait until the data
byte is shiftet out of the data register. This is implemented in a loop.
But in an event driven system, it is not allowed blocking the system
in a loop without taking care about event handling, so while waiting
for writing / receiving finished flag, an event handler is called in order
to process all pending events.

• Verifying

In order to verify if data was written correctly, flash memory of the
target must be read again and compared to the SRAM on host. This
takes again the same amount of time like programming flash, so check-
ing flash doubles the time used for programming the target (see section
3.6).

3.5 Definitions

Figure 3.3 reflects the implemented headerformat of the packets.

18

prog type prog ver active flag prog len CRC ...data... CRC

1 4 1 4 2 prog len 2

Figure 3.3: Packetformat

prog type and prog ver are used to identify the program code. The type
describes the target device which is destined for this code. This could be the
BTnode host itself or different types of targets. The definitions of program
types are stored in boot defs.h. prog ver is additionally used to determine if
a certain program is newer than another. The active flag is set to 1 as soon
as there is active program data in the memory. This byte is not transmitted
and only used locally. The CRC (Cyclic Redundancy Check) value is a hash
value over the header (first) and over the whole data (second). It is used to
check the integrity of the header and payload data.

Additionally, the EEPROM of the BTnode host is used to store the fol-
lowing values:

• connection status of the target

• type of the target

• version running on the target

These values are identified by four letters and read and set with the
FOURC macro function. The BTnode host uses the value in the EEPROM
to decide if a certain program is required or not.

To store this target information, EEPROM memory is used because it is
non-volatile. Contrary to using SRAM memory, target information is still
available after rebooting the host device.

3.6 Performance

With the Serial Downoading protocol, there are always four bytes instruc-
tions sent to the other device in order to write or read one byte of target flash
memory. So, remote programming takes a considerable amount of time:

• It takes about 60 seconds to programm the whole flash memory (128KB)
of the target. This time may vary a lot because during programming,
all pending events of the BTnode system are processed. Waiting a few
seconds for building up a connection to another BTnode device while
programming a target is not uncommon (although these connections
have nothing to do with target programming).

19

• If flash verifying is performed after programming, this takes approx-
imately the same time. Both programming and verifying take about
115 seconds of time.

• To compare, writing from SRAM to flash of the same BTnode takes
about 2 seconds, and Bluetooth transmission of 128KB from one BTn-
ode to another needs approximately 20 seconds.

20

Chapter 4

Usage

This chapter describes the installation process and usage of the target pro-
gramming. A running Linux installation is assumed.

4.1 Installation BTnode System Software

Download the BTnode system software directly from CVS and compile it
with the following commands:

CVSROOT=:pserver:anonymous@cvs.sourceforge.net:/cvsroot/btnode

export CVSROOT

cvs login

cvs -z3 co btnode system

cd btnode system

./bootstrap

./configure

make

make install

The libraries of the BTnode system software are installed to /usr/local/btnode.

4.2 Building BTnode Firmware

Proceed now to the target programmer:

cd development/bt-reprog

make btnode

make i386

21

The first make is used to generate the firmware for the BTnodes while
the second one builds the linux binary.

4.3 Runing Target Programming

The treenet binary in the i386 directory is the Linux application. It is
started (assumed a serial Bluetooth device is connected to /dev/ttyS0)
with:

./i386/treenet -u0 /dev/ttyS0 57600 nofc

Figure 4.1: Treenet application after start

If a binary for a target (Intel hex binary) is to be distributed, the process
is initiated by the command client (Figure 4.2). The program looks for a
binary called client.hex in the working directory. Figure 4.3 gives an
overview to an application programmer developing software for targets.

The content of the binary is now in the memory. As shown in Figure 4.4,
a set of parameters can be configured. A program version and a program
type is set and is used by the distribution process to differentiate between
old and new code. The program type was added to operate a network with
different targets.

22

Figure 4.2: Treenet application menu

4.4 Debugging on BTnodes

To check the reprogramming on the BTnodes, it is possible to connect a PC’s
serial interface to the UART port of the BTnode. On the PC a common
terminal emulation like minicom for Linux is used.

The sram function allows to show information about the actual content
in the SRAM.

[00:80:37:17:4d:08] > sram

--

| prog_type | prog_ver | active_flag | prog_len | crc | data crc |

| 1 | 45 | 1 | 105112 | 1 | 1 |

--

23

Prog.c // Cross Compiler // Hex File

Figure 4.3: Compiling

[00:80:37:17:4d:08] >

4.5 Multihopping

Figure 4.4 shows the distribution of code via multiple hops. The reprogram-
ming is started not until every device in the connection list of a BTnode
received the code. The entire process of programming a network is faster if
the reprogramming is done after the distribution.

Linux
Hex-File im RAM

Hex Parameter

��
BTnode
SRAM

SPI

��

�� ��
BTnode
SRAM

SPI

��

��
...

Target
Flash

Target
Flash

Figure 4.4: Code distribution

24

Chapter 5

Conclusion

In the current implementation, verifying flash memory of the target device
is always executed after writing to it. Host and target devices are connected
with a cable, the error rate of this direct connection is therefore very low. To
speed up the reprogramming process, the verifying could be skipped without
major disadvantages.

The flooding algorithm that is used to distribute uses no memory func-
tion. The default behaviour of a BTnode is to send its SRAM contents
to each neighbor. In the current implementation the connection attempts
are not systematically. An extension to improve stability and controllabil-
ity would be a table with BTnode addresses and their current versions. To
avoid inconsistencies over the program versions in the tree, a BTnode should
be able to detect if the connected target or the BTnode itself has not an
actual version. This could be achieved with a request for version function.
A BTnode is then, for example after a reboot, able to ask the neighbor
BTnodes for sending their actual version.

The developed software is only capable of communication in one way. A
missing feature of a multifunctional network is to inquire the status of the
devices and request logfiles. A tree network with thin asts has to provide a
reliable bandwith to process the whole data. It is possible that a radio of
a Mote sens r is not as fast to transport enough data in a given timeframe.
This management task has to be provided by the BTnode backbone network.

If this two way communictation is implemented, a regularly notify mes-
sage to the host BTnode could be used to check targets. The host BTnode is
able to detect a failure in its target after a certain timeout of missing notify
messages. This could be used to automatically reboot targets or perform a
hard reset combined with new programming.

Reprogramming a connected target via cable allows building scalable
multifunctional networks which are easily upgraded via wireless connections.
The operating system running on the target device is completely indepen-
dent of the host system. As targets, any devices with an ATMEL processor
could be used and don’t have to provide any wireless capabilities.

25

26

Appendix A

Aufgabenstellung

Einleitung

Eine bekannte Vision für ad hoc Netzwerke [3] geht davon aus, das unendlich
viele, sehr kleine “Sensorknoten” kollaborativ ein Netzwerk und eine App-
likation bilden. In anderen [4, 5] wird davon ausgegangen, das solche System
weite Bereiche abdecken können und das die einzelnen Komponenten unter-
schiedliche Ressourcen aufweisen.

Die BTnodes bestehen aus einem Atmel AVR Mikrokontroller und einem
Bluetooth Modul. Zusammen mit der im NCCR-MICS [6] entwickelten
BTnode System Software bilden sie eine sehr kompakte programmierbare
Netzwerk Platform für mobile ad hoc Netzwerke. Heute kann ein BTnode
zwar mit vielen verschiedenen anderen Bluetooth Geräten wie Handys und
Laptops kommunizieren, ist aber dabei nicht sehr flexibel was die Netzwerk-
topologie und Reaktivite angeht. Die Motes und ihr Betriebssystem TinyOS
sind ein ähnliches System das an der UC Berkeley entwickelt [7, 8] und
von Crossbow [9] kommerzialisiert wurde, das aber mit einem proprietärem
Funkprotokoll auf Basis eines Chipcon CC1000 [10] arbeitet.

Diese Platformen eignen sich hervorragend um sowohl Applikations Pro-
totypen und neue Algorithmen aus dem Bereich der ad hoc Netzwerke zu
implementieren. Innerhalb weniger Stunden kann ein “Neuling” die ersten
Schritte erlernen und beginnen eigene Applikationen zu entwickeln. Ein
grosses Problem besteht heute jedoch darin, eine auf einem oder wenigen
Knoten entwickelte Applikation auf grossen Anzahlen dieser neuen Sensor-
knoten zu entwickeln, zu verteilen und zu betreiben.

Das Ziel dieser Arbeit ist es die verschiedenen Technologien der Mote-
und BTnode Netzwerke zusammenzubringen und Mechanismen zu imple-
mentieren, die das verteilte Entwickeln und den Betrieb von heterogenen
Netzwerken ermöglichen. Dazu sollen in dieser Arbeit mehrere Kommu-
nikations Interfaces an einen AVR Mikrokontroller angeschlossen werden
und simultan betrieben werden um den Zugang zu unterschiedlichen Net-

27

Figure A.1: A BTnode and some Mote devices.

Figure A.2: BTnode System Übersicht

28

zwerksystemen zu ermöglichen.

Aufgabenstellung

1. Erstellen Sie einen Projektplan und legen Sie Meilensteine sowohl
zeitlich wie auch thematisch fest [11]. Erarbeiten Sie in Absprache
mit dem Betreuer ein Pflichtenheft.

2. Machen Sie sich mit den am Institut und bei Prof. Mattern bereits
durchgeführten Arbeiten [12, 1, 14] vertraut. Es sollten möglichst viele
Synergien aus schon durchgeführten Arbeiten genutzt werden. Führen
Sie eine Literaturrecherche durch. Suchen Sie nach relevanten neuen
Publikationen.

3. Arbeiten Sie sich in die Softwareentwicklungsumgebung der BTnodes
sowie von TinyOS ein. Machen Sie sich mit den erforderlichen Tools
vertraut und benutzen Sie die entsprechenden Hilfsmittel (online Doku-
mentation, Mailinglisten, Application Notes).

4. Für TinyOS wurde and der Universität Kopenhagen ein Bluetooth
Protokoll Stack entwickelt [15], der auf Sourceforge unter contrib\
tinybt verfügbar ist. Dieser kann auf den BTnodes oder auf einem
Mote mit angeschlossenem Bluetooth Modul betrieben werden. Ver-
suchen Sie ob dieser Stack zusammen mit dem standard CC100 Inter-
face auf einem Mote betrieben werden kann. Versuchen Sie ausserdem
die remote programming option des neuen TinyOS release 1.1.

5. Mit der TreeNet Applikation haben wir eine Backbone Infrastruk-
tur geschaffen, die es ermöglicht flexibel und spontan viele BTnodes
in einem transparenten Netzwerk zu verbinden. dazu wird ein baum
zwischen allen BTnodes aufgebaut über den dann alle Knoten erre-
icht werden können. Solch ein baum könnte in der Zukunft als “Ac-
cess Backbone” zu verschiedenen Teilen eines Sensornetzwerk Experi-
mentes dienen. Versuchen Sie Teile des Netzwerkes mit neuem Boot-
code neu zu programmieren.

6. Erarbeiten Sie ein Konzept das den flexiblen Zugriff und die Verteilung
von Bootcode in einem heterogenem Netzwerk aus Motes und BTnodes
ermöglicht. Beachten Sie hierzu das die Funktionen Bootcode update,
remote monitoring und remote debug auf beliebigen Knoten eines Net-
zwerkes möglich sein muss. Hierzu gibt es verschiedene Möglichkeiten
mit dem BTnode TreeNet als Backbone: (i) BTnode/Mote Sandwich
Knoten bei denen ein programmier/debug bus die Verbindung her-
stellt oder (ii) ein dual-radio System mit einem CC1000 und Bluetooth
Frontend and einem Host Controller.

29

7. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer
kleinen Demonstration, sowie mit einem Schlussbericht.

Durchführung der Semesterarbeit

Allgemeines

• Der Verlauf des Projektes Semesterarbeit soll laufend anhand des Pro-
jektplanes und der Meilensteine evaluiert werden. Unvorhergesehene
Probleme beim eingeschlagenen Lösungsweg können nderungen am
Projektplan erforderlich machen. Diese sollen dokumentiert werden.

• Sie verfügen über PC’s mit Linux/Windows für Softwareentwicklung
und Test. Für die Einhaltung der geltenden Sicherheitsrichtlinien der
ETH Zürich sind Sie selbst verantwortlich. Falls damit Probleme auf-
tauchen wenden Sie sich an Ihren Betreuer.

• Stellen Sie Ihr Projekt zu Beginn der Semesterarbeit in einem Kurzvor-
trag vor und präsentieren Sie die erarbeiteten Resultate am Schluss im
Rahmen des Institutskolloquiums Ende Semester.

• Besprechen Sie Ihr Vorgehen regelmässig mit Ihren Betreuern. Ver-
fassen Sie dazu auch einen kurzen wöchentlichen Statusbericht (email).

Abgabe

• Geben Sie zwei unterschriebene Exemplare des Berichtes spätestens
am 6. Februar 2004 dem betreuenden Assistenten oder seinen Stel-
lvertreter ab. Diese Aufgabenstellung soll vorne im Bericht eingefügt
werden.

• Räumen Sie Ihre Rechnerkonten soweit auf, dass nur noch die rele-
vanten Source- und Objectfiles, Konfigurationsfiles, benötigten Direc-
torystrukturen usw. bestehen bleiben. Der Programmcode sowie die
Filestruktur soll ausreichen dokumentiert sein. Eine spätere Anschlus-
sarbeit soll auf dem hinterlassenen Stand aufbauen können.

30

Bibliography

[1] Urs Frey. Topology and Position Estimation in Bluetooth Ad-hoc Net-
works, Diploma Thesis, ETH Zurich, Winter Semester 2002 / 2003.

[2] ATMEL. ATmega128 Preliminary Complete
http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf.

[3] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next Century Challenges:
Mobile Networking for Smart Dust. In Proc. 5th ACM/IEEE Ann. Int’I
Conf. Mobile Computing and Networking (MobiCom 99), pages 271-
278. ACM Press, New York, Aug. 1999.

[4] J.-P. Hubaux, T. Gross, J.-Y. Le-Boudec, and M. Vetterli. Toward
self-organized mobile ad hoc networks: The Terminodes Project. IEEE
Communications Magazine, 39(1): 118-124, Jan. 2001.

[5] L. Blazevic, L. Buttyan, S. Capkun, S. Giordano, P. Hubaux-J, and Y.
Le-Boudec-J. Self organization in mobile ad hoc networks: the approach
of terminodes. IEEE Communications Magazine, 39(6):166-174, June
2001.

[6] NCCR-MICS: Swiss National Competence Center on Mobile Informa-
tion and Communication Systems. http://www.mics.org.

[7] J. Hill et al. System architecture directions for networked sensors. In
Proc. 9th Int’I Conf. Architectural Support Programming Languages
and Operating Systems (ASPLOS-IX), pages 93-104. ACM Press, New
York, Nov. 2000.

[8] D. Culler et al. TinyOS: An operating system for Networked Sensors.
http://webs.cs.berkeley.edu/tos.

[9] Crossbow Technology Inc. http://www.xbow.com.

[10] Chipcon. CC1000, Single Chip Very Low Power RF Transceiver, April
2002.

[11] E.Zitzler. Studien- und Diplomarbeiten, Merkblatt für Studenten und
Betreuer. ETH Zürich, TIK, Mar. 1998.

31

[12] R. Semadeni and L. Wernli. Bluetooth Unleashed, Wireless Netzwerke
ohne Grenzen. Term thesis, Computer Engineering and Networks Lab,
Swiss Federal Institute of Technology (ETH) Zurich, July 2001.

[13] U. Frey. Topology and Position Estimation in Bluetooth Ad Hoc Net-
works. Master’s thesis, Dept. Information Technology and Electrical
Engineering, ETH Zurich, 2003.

[14] BTnodes - A Distributed Environment for Prototyping Ad Hoc Net-
works. http://www.btnode.ethz.ch.

[15] M. Leopold, M.B. Dydensborg, and P. Bonnet. Bluetooth and Sensor
NEtworks: A Reality Check. In Proc. 1st ACM Conf. Embedded Net-
worked Sensor Systems (SenSys 2003). ACM Press, New York, Nov.
2003.

32

